Package ‘zoolog’

August 26, 2022

Title Zooarchaeological Analysis with Log-Ratios

Version 1.1.0

Date 2022-8-22

Description Includes functions and reference data to generate and manipulate log-ratios (also known as log size index (LSI) values) from measurements obtained on zooarchaeological material. Log ratios are used to compare the relative (rather than the absolute) dimensions of animals from archaeological contexts (Meadow 1999, ISBN: 9783896463883).

zoolog is also able to seamlessly integrate data and references with heterogeneous nomenclature, which is internally managed by a zoolog thesaurus.

A preliminary version of the zoolog methods was first used by Trentacoste, Nieto-Espinet, and Valenzuela-Lamas (2018) <doi:10.1371/journal.pone.0208109>.

License GPL-3

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.2.1

Suggests testthat, knitr, rmarkdown, ggplot2, stats

Depends R (>= 3.0)

Imports utils, stringi, Rdpack (>= 0.7)

Config/testthat/edition 3

RdMacros Rdpack

VignetteBuilder knitr

URL https://josempozo.github.io/zoolog/

NeedsCompilation no

Author Jose M Pozo [aut, cre] (<https://orcid.org/0000-0002-0759-3510>), Angela Trentacoste [aut] (<https://orcid.org/0000-0001-7096-5252>),

1
AssembleReference

Function to build a reference dataframe selecting a case for each taxon from the available specimens in the references’ database.

Usage

AssembleReference(
 combination,
 ref.db = referencesDatabase,
 thesaurus = zoologThesaurus$taxon
)
CondenseLogs

Arguments

- **combination**: A dataframe or named list. Each (column) name identifies a taxon. Each column or list element must have a single element of type character, identifying one of the sources included in the references’ database.

- **ref.db**: A reference database. This is a named list of named lists of dataframes. The first level is named by taxon and the second level is named by reference source. Each dataframe includes the reference for the corresponding taxon and source. The default `ref.db = referencesDatabase` is provided as package `zoolog` data.

- **thesaurus**: A thesaurus for taxa.

Value

A reference dataframe.

Examples

```r
## 'referenceSets' includes a series of predefined reference compositions.
referenceSets
## Actually the package 'references' is build from them.
## We can rebuild any of them:
referenceCombi <- AssembleReference(referenceSets["Combi", ])

## Define an alternative reference combining differently the references' database:
refComb <- list(cattle = "Nieto", sheep = "Davis", Goat = "Clutton",
                pig = "Albarella", redDeer = "Basel")
userReference <- AssembleReference(refComb)
```

CondenseLogs

Condense Measure Log-Ratios

Description

This function condenses the calculated log ratio values into a reduced number of features by grouping log ratio values and selecting or calculating a feature value. By default the selected groups each represents a single dimension, i.e. Length and Width. Only one feature is extracted per group. Currently, two methods are possible: priority (default) or average.

Usage

```r
CondenseLogs(
  data,
  grouping = list(Length = c("GL", "GLl", "GLm", "HTC"), Width = c("BT", "Bd", "Bp",
                   "SD", "Bfd", "Bfp"), Depth = c("Dd", "DD", "BG", "Dp")),
  method = "priority"
)
```
Arguments

data A dataframe with the input measurements.
grouping A list of named character vectors. The list includes a vector per selected group.
 Each vector gives the group of measurements in order of priority. By default the
 groups are Length = c("GL", "GLl", "GLm", "HTC"), Width = c("BT", "Bd",
 "Bp", "SD", "Bfd", "Bfp"), and Depth = c("Dd", "DD", "BG", "Dp"). The
 order is irrelevant for method = "average".
method Character string indicating which method to use for extracting the condensed
 features. Currently accepted methods: "priority" (default) and "average".

Details

This operation is motivated by two circumstances. First, not all measurements are available for
every bone specimen, which obstructs their direct comparison and statistical analysis. Second,
several measurements can be strongly correlated (e.g. SD and Bd both represent bone width).
Thus, considering them as independent would produce an over-representation of bone remains with
more measurements per axis. Condensing each group of measurements into a single feature (e.g.
one measure per axis) palliates both problems.

Observe that an important property of the log-ratios from a reference is that it makes the different
measures comparable. For instance, if a bone is scaled with respect to the reference, so that it
homogeneously doubles its width, then all width related measures (BT, Bd, Bp, SD, ...) will give
the same log-ratio ($\log(2)$). In contrast, the absolute measures are not directly comparable.

The measurement names in the grouping list are given without the logPrefix. But the selection is
made from the log-ratios.

The default method is "priority", which selects the first available measure log-ratio in each group.
The method "average" extracts the mean per group, ignoring the non-available measures. We
provide the following by-default group and prioritization: For lengths, the order of priority is: GL,
GLl, GLm, HTC. For widths, the order of priority is: BT, Bd, Bp, SD, Bfd, Bfp. For depths, the
order of priority is: Dd, DD, BG, Dp This order maximises the robustness and reliability of the
measurements, as priority is given to the most abundant, more replicable, and less age dependent
measurements.

This method was first used in: Trentacoste, A., Nieto-Espinet, A., & Valenzuela-Lamas, S. (2018).
Pre-Roman improvements to agricultural production: Evidence from livestock husbandry in late
prehistoric Italy. PloS one, 13(12), e0208109.

Alternatively, a user-defined method can be provided as a function with a single argument (data.frame)
assumed to have as columns the measure log-ratios determined by the grouping.

Value

A dataframe including the input dataframe and additional columns, one for each extracted con-
densed feature, with the corresponding name given in grouping.

Examples

```r
## Read an example dataset:
dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz",
                          package="zoolog")
```
dataExample <- utils::read.csv2(dataFile,
 na.strings = "",
 encoding = "UTF-8")
For illustration purposes we keep now only a subset of cases to make
the example run sufficiently fast.
Avoid this step if you want to process the full example dataset.
dataExample <- dataExample[1:1000,]
Compute the log-ratios and select the cases with available log ratios:
dataExampleWithLogs <- RemoveNACases(LogRatios(dataExample))
We can observe the first lines (excluding some columns for visibility):
head(dataExampleWithLogs)[, -c(6:20,32:63)]
Extract the default condensed features with the default "priority" method:
dataExampleWithSummary <- CondenseLogs(dataExampleWithLogs)
head(dataExampleWithSummary)[, -c(6:20,32:63)]
Extract only width with "average" method:
dataExampleWithSummary2 <- CondenseLogs(dataExampleWithLogs,
 grouping = list(Width = c("BT", "Bd", "Bp", "SD")),
 method = "average")
head(dataExampleWithSummary2)[, -c(6:20,32:63)]

dataValenzuelaLamas2008

Example dataset

Description

The dataset provided as an example originates from (Valenzuela-Lamas 2008). The dataset is written in Catalan, with the exception of some headings to facilitate understanding of its contents.

Format

The dataset is provided in the zoolog extdata folder as a file in semicolon-separated values format but compressed with gzip to reduce its size:

dataValenzuelaLamas2008.csv.gz

The file is provided in UTF-8 encoding. The file encoding is relevant because the dataset contains accents and special characters that needs to be correctly displayed. It can be directly open by utils::read.csv2, provided that the correct encoding is set (see examples below).

Every row of the data.frame refers to one individual bone fragment unless otherwise stated in the Observations field ("Observacions").

All the measurements are expressed in millimetres and were obtained with a manual calliper.

The main headings in the database are:

Site The faunal remains from three Iron Age archaeological sites were recorded (ALP = Alorda Park, TFC = Turó de la Font de la Canya, OLD = Olèrdola).
N inv A correlative number for each fragment.
UE Refers to the Stratigraphic Unit (SU in English).
Especie Refers to the species.
Os Refers to the skeletal element.
Fragment Refers to the preserved part in the vertical axis (distal, proximal, diaphysis, etc.).
Lat Bone laterality: right (d) or left (e).
Vora Refers to the preserved part in relation to the circumference (c), or a vertically, transversally and obliquely fragmented (sto).
Fract Refers to fracture during field excavation or lab work.
Tafo Refers to anthropic and post-depositional alterations.
Grau Refers to degree of bone alteration in a scale from 0 (no alteration) to 4 (diaphysis completely altered).
Epif Degree of fusion: s= fused, ns= unfused, ec = fusion visible. Also tooth wear is recorded here following (Gardeisen 1997).
Sexe Sex: male (masc) / female (fem).
Traces Refers to butchery marks. It may also include other observations.
Observacions Observations.
Recinte Refers to the number of silo structure (e.g. SJ8) or the room (e.g. AB) from which the material originates.
TPQ Absolute chronology in Terminus Post Quem.
TAQ Absolute chronology in Terminus Ante Quem.
Period Chronological phasing.
Capsa Box number that contains the item.
Measurement codes The nomenclature follows (Von den Driesch 1976).

References

Von den Driesch A (1976). A guide to the measurement of animal bones from archaeological sites: as developed by the Institut für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin of the University of Munich, volume 1. Peabody Museum Press.

Examples

dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz", package="zoolog")
dataExample <- utils::read.csv2(dataFile, na.strings = "", encoding = "UTF-8")
InCategory

Value Matching by Thesaurus Category

Description

Function to check if an element belongs to a category according to a thesaurus. It is similar to `%in%` and `is.element`, returning a logical vector indicating if each element in a given vector is included in a given set. But InCategory checks for equality assuming the equivalencies defined in the given thesaurus.

Usage

InCategory(x, category, thesaurus)

Arguments

- **x**: Character vector to be checked for its inclusion in the category.
- **category**: Character vector identifying the categories in which the inclusion of x will be checked. Each category can be identified by any equivalent name in the thesaurus.
- **thesaurus**: A thesaurus object.

Value

A logical vector of the same length as x. Each value answers the question: *Does the corresponding element in x belongs to any of the thesaurus categories identified by category?*

See Also

`zoologThesaurus`, `%in%`

Examples

InCategory(c("sheep", "cattle", "goat", "red deer"),
 c("ovis", "capra"),
 zoologThesaurus$taxon)
LogRatios

Log Ratios of Measurements

Description

Function to compute the (base 10) log ratios of the measurements relative to standard reference values. The default reference and several alternative references are provided with the package. But the user can use their own references if desired.

Usage

LogRatios(
 data,
 ref = reference$Combi,
 identifiers = c("Taxon", "Element"),
 refMeasuresName = "Measure",
 refValuesName = "Standard",
 thesaurusSet = zoologThesaurus,
 taxonomy = zoologTaxonomy,
 joinCategories = NULL,
 mergedMeasures = NULL,
 useGenusIfUnambiguous = TRUE
)

Arguments

data A dataframe with the input measurements.
ref A dataframe including the measurement values used as references. The default ref = reference$Combi and other reference sets are provided with the package zoolog.
identifiers A vector of column names in ref identifying a type of bone. By default identifiers = c("Taxon", "Element").
refMeasuresName The column name in ref identifying the type of bone measurement.
refValuesName The column name in ref giving the measurement value.
thesaurusSet A thesaurus allowing datasets with different nomenclatures to be merged. By default thesaurusSet = zoologThesaurus.
taxonomy A taxonomy allowing the automatic detection of data and reference sharing the same genus (or higher taxonomic rank), although of different species. By default taxonomy = zoologTaxonomy.
joinCategories A list of named character vectors. Each vector is named by a category in the reference and includes a set of categories in the data for which to compute the log ratios with respect to that reference. When NULL (default) no grouping is considered.
mergedMeasures A list of character vectors or a single character vector. Each vector identifies a set of measures that the data presents merged in the same column, named as any of them. This practice only makes sense if only one of the measures can appear in each bone element.

useGenusIfUnambiguous Boolean. If TRUE (default), data cases are matched to reference sharing the same genus, instead of sharing the same species.

Details

Each log ratio is defined as the decimal logarithm of the ratio of the variable of interest to a corresponding reference value.

The identifiers are expected to determine corresponding columns in both data and reference. Each value in these columns identifies the type of bone. By default this is determined by a taxon and a bone element. For any case in the data, the log ratios are computed with respect to the reference values in the same bone type. If the reference does not include that bone type, the corresponding log ratios are set to NA.

The taxonomy allows the matching of data and reference by genus, instead of by species. This is the default behaviour with useGenusIfUnambiguous = TRUE, unless there is some ambiguity: reference including more than one species for the same genus. For instance, reference$Combi includes a reference for Sus scrofa. If the data includes cases of Sus domesticus, their log ratios will be computed with respect to the provided reference for Sus scrofa. However, a warning is given to inform the user of this assumption, and let they know that this can be prevented by setting useGenusIfUnambiguous = FALSE.

For some applications it can be interesting to group some set of bone types into the same reference category to compute the log ratios. The parameter joinCategories allows this grouping. joinCategories must be a list of named vectors, each including the set of categories in the data which should be mapped to the reference category given by its name.

This can be applied to group different species into a single reference species. For instance sheep, capra, and doubtful cases between both (sheep/goat), can be grouped and matched to the same reference for sheep, by setting joinCategories = list(sheep = c("sheep", "goat", "oc")). Indeed, the zoologTaxonomy can be used for that purpose using the function SubtaxonomySet as joinCategories = list(sheep = SubtaxonomySet("Caprini")). Similarly, joinCategories can be applied to group different bone elements into a single reference (see the example below for undetermined phalanges).

Note that the joinCategories option does not remove the distinction between the different bone types in the data, just indicates that for any of them the log ratios must be computed from the same reference.

Using the taxonomy, the presence of cases identified by higher taxonomic ranks are also automatically detected. For instance, if some partially identified cases have been recorded as "Ovis/Capra", this is recognized to denote the tribe Caprini, which includes several possible species. Then a warning is given informing the user of the detection of these cases and of the option to use any of the corresponding species in the reference by using the argument joinCategories (unless this has been already done).

There are some measures that, for most usual taxa, are restricted to a subset of bones. For instance, for Bos, Ovis, Capra, and Sus, the measure GLl is only relevant for the astragalus, while GL is
not applicable to it. Thus, there cannot be any ambiguity between both measures since they can
be identified by the bone element. This justifies that some users have simplified datasets where
a single column records indistinctly GL or GL. The optional parameter mergedMeasures facili-
tates the processing of this type of simplified dataset. For the alluded example, mergedMeasures =
list(c("GL", "GLl")) automatically selects, for each bone element, the corresponding measure
present in the reference.

Observe that if mergedMeasures is set to non mutually exclusive measures, the behaviour is unpre-
dictable.

Value

A dataframe including the input dataframe and additional columns, one for each extracted log ratio
for each relevant measurement in the reference. The name of the added columns are constructed by
prefixing each measurement by the internal variable logPrefix.

If the input dataframe includes additional S3 classes (such as "tbl_df"), they are also passed to the
output.

Examples

```r
dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz",
  package="zoolog")
dataExample <- utils::read.csv2(dataFile,
  na.strings = "",
  encoding = "UTF-8")

# For illustration purposes we keep now only a subset of cases to make
# the example run sufficiently fast.
# Avoid this step if you want to process the full example dataset.
dataExample <- dataExample[1:400, ]

# We can observe the first lines (excluding some columns for visibility):
head(dataExample)[, -c(6:20,32:64)]

# Compute the log-ratios with respect to the default reference in the
# package zoolog:
dataExampleWithLogs <- LogRatios(dataExample)
# The output data frame include new columns with the log-ratios of the
# present measurements, in both data and reference, with a "log" prefix:
head(dataExampleWithLogs)[, -c(6:20,32:64)]

# Compute the log-ratios with respect to a different reference:
dataExampleWithLogs2 <- LogRatios(dataExample, ref = reference$Basel)
head(dataExampleWithLogs2)[, -c(6:20,32:64)]

# Define an alternative reference combining differently the references'
# database:
refComb <- list(cattle = "Nieto", sheep = "Davis", Goat = "Clutton",
  pig = "Albarella", redDeer = "Basel")
userReference <- AssembleReference(refComb)

# Compute the log-ratios with respect to this alternative reference:
dataExampleWithLogs3 <- LogRatios(dataExample, ref = userReference)
```
We can be interested in including the first and second phalanges without
anterior-posterior identification ("phal 1" and "phal 2"), by computing
their log ratios with respect to the reference of the corresponding
anterior phalanges ("phal 1 ant" and "phal 2 ant", respectively).
For this we use the optional argument joinCategories:
categoriesPhalAnt <- list('phal 1 ant' = c("phal 1 ant", "phal 1"),
 'phal 2 ant' = c("phal 2 ant", "phal 2"))
dataExampleWithLogs4 <- LogRatios(dataExample,
 joinCategories = categoriesPhalAnt)
head(dataExampleWithLogs4[, -c(6:20,32:64)]

Description

Several osteometrical references are provided in zoolog to enable researchers to use the one of their choice. The user can also use their own osteometrical reference if preferred.

Usage

- reference
- referenceSets
- referencesDatabase

Format

Each reference is a data.frame including 4 columns:

- **TAX** The taxon to which each reference bone belongs.
- **EL** The skeletal element.
- **Measure** The type of measurement taken on the bone.
- **Standard** The value of the measurement taken on the bone. All the measurements are expressed in millimetres.

An object of class data.frame with 4 rows and 15 columns.

An object of class list of length 15.

Data Source

Currently, the references include reference values for the main domesticates and their agriotypes (*Bos*, *Ovis*, *Capra*, *Sus*), and other less frequent species, such as red deer and donkey, drawn from the following publications and resources:

- **Cattle - Bos** *Nieto* *Bos taurus*. Female cow dated to the Early Bronze Age (Minferri, Catalonia), in Nieto-Espinet (2018).
Basel *Bos taurus*. Inv.nr. 2426 (Hinterwälder; female; 17 years old; live weight: 340 kg; withers height: 113 cm), from Stopp and Deschler-Erb (2018).

Johnstone *Bos taurus*. Standard values from means of cattle measures from Period II (Late Iron Age to Romano-British transition) of Elms Farm, Heybridge (Johnstone and Albarella 2002).

Degerbøl *Bos primigenius*. Female aurochs from Degerbøl and Fredskild (1970). Non-standard measures converted to more standard ones (Von den Driesch 1976)

Steppan *Bos primigenius*. Female aurochs from Steppan (2001). Same specimen as in Degerbøl and Fredskild (1970), but with new and more standard measures (Von den Driesch 1976). Mean measurements from left and right bones when available.

Sheep - *Ovis* Davis *Ovis aries*. Mean values of measurements from a group of adult female Shetland sheep skeletons from a single flock (Davis 1996).

Clutton *Ovis aries*. Mean measurements from a group of male Soay sheep of known age (Clutton-Brock et al. 1990).

Basel *Ovis musimon*. Inv.nr. 2266 (male; adult), from Stopp and Deschler-Erb (2018).

Uerpmann *Ovis orientalis*. Field Museum of Chicago catalogue number: FMC 57951 (female; western Iran) from Uerpmann and Uerpmann (1994).

Goat - *Capra* Basel *Capra hircus*. Inv.nr. 1597 (male; adult), from Stopp and Deschler-Erb (2018).

Clutton *Capra hircus*. Mean measurements from a group of goats of unknown age and sex (Clutton-Brock et al. 1990).

Uerpmann *Capra aegagrus*. Measurements based on female and male *Capra aegagrus*, Natural History Museum in London number: BMNH 651 M and L2 (Taurus Mountains in southern Turkey) from Uerpmann and Uerpmann (1994).

Pig - *Sus* Albarella *Sus domesticus*. Mean measurements from a group of Late Neolithic pigs from Durrington Walls, England (Albarella and Payne 2005).

Basel *Sus scrofa*. Inv.nr. 1446 (male; 2-3 years old; life weight: 120 kg) from Stopp and Deschler-Erb (2018).

Hongo *Sus scrofa*. Averaged left and right measurements of a female wild board from near Elaziğ, Turkey. Museum of Comparative Zoology, Harvard University, specimen #51621 (Hongo and Meadow 2000).

Red deer - *Cervus* Basel *Cervus elaphus*. Inv.nr. 2271 (male; adult) from Stopp and Deschler-Erb (2018).

Fallow deer - *Dama* Haifa *Dama mesopotamica*. Adult female modern specimen from Israel (id #1047), curated in Archaeozoology Laboratory at the University of Haifa (Harding and Marom 2021).

Gazelle - *Gazella* Haifa *Gazella gazella*. Adult female modern specimen from Israel (id #1037), curated in Archaeozoology Laboratory at the University of Haifa (Harding and Marom 2021).

Equid - *Equus* Haifa *Equus asinus*. Adult male modern specimen from Israel (id #1076), curated in Archaeozoology Laboratory at the University of Haifa (Harding and Marom 2021).

European rabbit - *Oryctolagus* Nottingham *Oryctolagus cuniculus*. Adult male European rabbit from Audley End, Essex, UK, curated in the reference collection at University of Nottingham Arch department (ID RS139) (Ameen 2021).

The `zoolog` variable `referencesDatabase` collects all these references. It is structured as a named list of named lists, following the hierarchy described above:

```r
str(referencesDatabase, max.level = 2)
#> List of 15
#> $ Bos taurus :List of 3
#> ..$ Nieto : 'data.frame': 68 obs. of 4 variables:
#> ..$ Basel : 'data.frame': 50 obs. of 4 variables:
#> ..$ Johnstone: 'data.frame': 24 obs. of 4 variables:
#> $ Bos primigenius :List of 2
#> ..$ Degerbol: 'data.frame': 50 obs. of 4 variables:
#> ..$ Steppan : 'data.frame': 84 obs. of 4 variables:
#> $ Ovis aries :List of 2
#> ..$ Davis : 'data.frame': 23 obs. of 4 variables:
#> ..$ Clutton: 'data.frame': 71 obs. of 4 variables:
#> $ Ovis orientalis :List of 2
#> ..$ Basel : 'data.frame': 36 obs. of 4 variables:
#> ..$ Uerpmann: 'data.frame': 50 obs. of 4 variables:
#> $ Capra hircus :List of 2
#> ..$ Basel : 'data.frame': 35 obs. of 4 variables:
#> ..$ Clutton: 'data.frame': 60 obs. of 4 variables:
#> $ Capra aegagrus :List of 1
#> ..$ Uerpmann: 'data.frame': 50 obs. of 4 variables:
#> $ Sus domesticus :List of 1
#> ..$ Albarella:'data.frame': 42 obs. of 4 variables:
#> $ Sus scrofa :List of 3
#> ..$ Basel:'data.frame': 41 obs. of 4 variables:
#> ..$ Hongo:'data.frame': 96 obs. of 4 variables:
#> ..$ Payne:'data.frame': 33 obs. of 4 variables:
#> $ Cervus elaphus :List of 1
#> ..$ Basel:'data.frame': 14 obs. of 4 variables:
#> $ Dama mesopotamica :List of 1
#> ..$ Haifa:'data.frame': 60 obs. of 4 variables:
#> $ Gazella gazella :List of 1
#> ..$ Haifa:'data.frame': 63 obs. of 4 variables:
#> $ Equus asinus :List of 1
#> ..$ Haifa:'data.frame': 48 obs. of 4 variables:
#> $ Equus caballus :List of 1
#> ..$ Johnstone:'data.frame': 75 obs. of 4 variables:
#> $ Oryctolagus cuniculus:List of 1
#> ..$ Nottingham:'data.frame': 58 obs. of 4 variables:
#> $ Canis lupus :List of 1
#> ..$ Russell:'data.frame': 77 obs. of 4 variables:
```
Reference Sets

The references’ database is organized per taxon. However, in general the zooarchaeological data to be analysed includes several taxa. Thus, the reference dataframe should include one reference standard for each relevant taxon. The `zoolog` variable `referenceSets` defines four possible references:

```r
str(reference)
#> List of 4
#> $ NietoDavisAlbarella:
#>  'data.frame': 133 obs. of 4 variables:
#> ..$ TAX : Factor w/ 3 levels "bota","ovar",..: 1 1 1 1 1 1 1 1 1 ...  
#> ..$ EL : Factor w/ 27 levels "AS","CAL","FE",..: 4 4 4 4 4 4 4 4 11 ...
#> ..$ Measure: Factor w/ 26 levels "BFd","BFp","BT",..: 8 9 5 7 13 4 3 12 6 8 ...
#> ..$ Standard: num [1:133] 259 234 78.3 90.2 29 ...
#> $ Basel:
#>  'data.frame': 176 obs. of 4 variables:
#> ..$ TAX : Factor w/ 5 levels "BOTA","Ovis orientalis",..: 1 1 1 1 1 1 1 1 ...  
#> ..$ EL : Factor w/ 28 levels "Astragalus","Calcaneus",..: 14 14 14 14 5 5 5 13 13 ...
#> ..$ Measure: Factor w/ 26 levels "BFd","BFp","BG",..: 21 13 18 3 5 4 19 6 19 5 ...
#> ..$ Standard: num [1:176] 69.9 83 66.9 58.1 95.3 ...
#> $ Combi:
#>  'data.frame': 635 obs. of 4 variables:
#> ..$ TAX : Factor w/ 11 levels "bota","OVAR",..: 1 1 1 1 1 1 1 1 1 ...  
#> ..$ EL : Factor w/ 69 levels "AS","CAL","FE",..: 4 4 4 4 4 4 4 4 11 ...
#> ..$ Measure: Factor w/ 83 levels "BFd","BFp","BT",..: 8 9 5 7 13 4 3 12 6 8 ...
#> ..$ Standard: num [1:635] 259 234 78.3 90.2 29 ...
#> $ Groningen:
#>  'data.frame': 246 obs. of 4 variables:
#> ..$ TAX : Factor w/ 4 levels "Bos primigenius",..: 1 1 1 1 1 1 1 1 ...
#> ..$ EL : Factor w/ 23 levels "Astragalus","Calcaneus",..: 13 13 13 5 5 5 5 12 12 ...
#> ..$ Measure: Factor w/ 45 levels "BFp","BG","BT",..: 14 12 2 8 9 4 3 13 8 5 ...
#> ..$ Standard: num [1:246] 69 70 60 359 309 97 89 46 320 100 ...
```

Each row defines a reference set consisting of a reference source for each taxon (column). The function `AssembleReference` allows us to build the reference set taking the selected taxon-specific references from the `referencesDatabase`.

The `zoolog` variable `reference` is a named list including the references defined by `referenceSets`:

```
reference$Combi includes the most comprehensive reference for each species so that more measurements can be considered. It is the default reference for computing the log ratios.

If desired, the user can define their own combinations or can also use their own references, which must be a dataframe with the format described above.
File Structure

referencesDatabase, referenceSets, and reference are exported variables automatically loaded in memory. In addition, zoolog provides in the extdata folder a set of semicolon separated files (csv), generating them:

referenceSets.csv Defines referenceSets.
referencesDatabase.csv Defines the structure of referencesDatabase.

... A csv file for each taxon-specific reference, as named in referencesDatabase.csv.

```r
tools::read.csv2(system.file("extdata", "referencesDatabase.csv",
 package = "zoolog"))
```

<table>
<thead>
<tr>
<th>#&gt;</th>
<th>Genus</th>
<th>Taxon</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cattle</td>
<td><em>Bos</em> taurus</td>
<td>Nieto</td>
</tr>
<tr>
<td>2</td>
<td>Cattle</td>
<td><em>Bos</em> taurus</td>
<td>Basel</td>
</tr>
<tr>
<td>3</td>
<td>Cattle</td>
<td><em>Bos</em> taurus</td>
<td>Johnstone</td>
</tr>
<tr>
<td>4</td>
<td>Cattle</td>
<td><em>Bos</em> primigenius</td>
<td>Degerbol</td>
</tr>
<tr>
<td>5</td>
<td>Cattle</td>
<td><em>Bos</em> primigenius</td>
<td>Steppan</td>
</tr>
<tr>
<td>6</td>
<td>Sheep</td>
<td><em>Ovis</em> aries</td>
<td>Davis</td>
</tr>
<tr>
<td>7</td>
<td>Sheep</td>
<td><em>Ovis</em> aries</td>
<td>Clutton</td>
</tr>
<tr>
<td>8</td>
<td>Sheep</td>
<td><em>Ovis</em> orientalis</td>
<td>Basel</td>
</tr>
<tr>
<td>9</td>
<td>Sheep</td>
<td><em>Ovis</em> orientalis</td>
<td>Uerpmann</td>
</tr>
<tr>
<td>10</td>
<td>Goat</td>
<td><em>Capra</em> hircus</td>
<td>Basel</td>
</tr>
<tr>
<td>11</td>
<td>Goat</td>
<td><em>Capra</em> hircus</td>
<td>Clutton</td>
</tr>
<tr>
<td>12</td>
<td>Goat</td>
<td><em>Capra</em> aegagrus</td>
<td>Uerpmann</td>
</tr>
<tr>
<td>13</td>
<td>Pig</td>
<td><em>Sus</em> domesticus</td>
<td>Albarella</td>
</tr>
<tr>
<td>14</td>
<td>Pig</td>
<td><em>Sus</em> scrofa</td>
<td>Basel</td>
</tr>
<tr>
<td>15</td>
<td>Pig</td>
<td><em>Sus</em> scrofa</td>
<td>Hongo</td>
</tr>
<tr>
<td>16</td>
<td>Pig</td>
<td><em>Sus</em> scrofa</td>
<td>Payne</td>
</tr>
<tr>
<td>17</td>
<td>Red deer</td>
<td><em>Cervus</em> elaphus</td>
<td>Basel</td>
</tr>
<tr>
<td>18</td>
<td>Fallow deer</td>
<td><em>Dama</em> mesopotamica</td>
<td>Haifa</td>
</tr>
<tr>
<td>19</td>
<td>Gazelle</td>
<td><em>Gazella</em> gazella</td>
<td>Haifa</td>
</tr>
<tr>
<td>20</td>
<td>Equid</td>
<td><em>Equus</em> asinus</td>
<td>Haifa</td>
</tr>
<tr>
<td>21</td>
<td>Equid</td>
<td><em>Equus</em> caballus</td>
<td>Johnstone</td>
</tr>
<tr>
<td>22</td>
<td>European rabbit</td>
<td><em>Oryctolagus</em> cuniculus</td>
<td>Nottingham</td>
</tr>
<tr>
<td>23</td>
<td>Canid</td>
<td><em>Canis</em> lupus</td>
<td>Russell</td>
</tr>
</tbody>
</table>

Filename

- referenceCattle_Nieto.csv
- referenceCattle_Basel.csv
- referenceCattle_Johnstone.csv
- referenceCattle_Degerbol.csv
- referenceCattle_Steppan.csv
- referenceSheep_Davis.csv
- referenceSheep_Clutton.csv
- referenceSheep_Basel.csv
- referenceSheep_Uerpmann.csv
- referenceGoat_Basel.csv
- referenceGoat_Clutton.csv
- referenceGoat_Uerpmann.csv
Acknowledgement

We are grateful to Barbara Stopp and Sabine Deschler-Erb (University of Basel, Switzerland) for providing the Basel references for cattle, sheep, goat, wild boar, and red deer (Stopp and Deschler-Erb 2018), together with the permission to publish them as part of zoolog. We thank also Francesca Slim and Dimitris Filioglou (University of Groningen) for providing the references for aurochs, mouflon, wild goat, and wild boar (Degerbøl and Fredskild 1970; Uerpmann and Uerpmann 1994; Hongo and Meadow 2000) in the Groningen set. We thank Claudia Minniti (University of Salento) for providing Johnstone’s reference for cattle (Johnstone and Albarella 2002). We are also grateful to Sierra Harding and Nimrod Marom (University of Haifa) for providing the Haifa standard measurements for donkey, mountain gazelle, and Persian fallow deer (Harding and Marom 2021). We thank Carly Ameen and Helene Benkert (University of Exeter) for providing references for horse (Johnstone 2004) and European rabbit (Ameen 2021). We thank Mikolaj Lisowski (University of York) for pointing to the existence of the improved reference for Bos primigenius (Steppan 2001) and providing its source.

References


Ameen C (2021). “Measurements from an adult male specimen from Audley End, Essex, UK. in the reference collection at the University of Nottingham Archaeology Department under ID RS139.” Personal communication, included permission to publish them as part of the package zoolog.


Degerbøl M, Fredskild B (1970). The Urus (Bos Primigenius Bojanus) and Neolithic Domesticated Cattle (Bos Taurus Domesticus Linné) in Denmark: Zoological and Palynological Investigations,
Harding S, Marom N (2021). “Measurements compiled for the Zooarchaeology of Southern Phoenicia (ZSP) Project, from the reference collection in the Leon Recanati Institute for Maritime Studies (RIMS, Department of Maritime Civilizations, University of Haifa, Israel).” Personal communication, included permission to publish them as part of the package zoolog.


Stopp B, Deschler-Erb S (2018). “Measurements compiled from the reference collection in the Integrative Prähistorische und Naturwissenschaftliche Archäologie (IPNA, University of Basel, Switzerland).” Personal communication, included permission to publish them as part of the package zoolog.


Von den Driesch A (1976). A guide to the measurement of animal bones from archaeological sites: as developed by the Institut für Palaeoanatomie, Domestikationsforschung und Geschichte
RemoveNACases

Remove Cases Missing All Measurements

Description

Function to remove the table rows for which all measurements of interest are non-available (NA). A particular list of measurement names can be explicitly provided or selected by a common initial pattern. The default setting removes the rows with no log-ratio available.

Usage

RemoveNACases(data, measureNames = NULL, prefix = logPrefix)

Arguments

data A dataframe with the input measurements.
measureNames A vector of characters with the list of measurements to be considered for missing values. If NULL (default), all measurements starting by prefix are considered.
prefix A character string with the initial pattern to select the list of measurements. The default is given by the internal variable logPrefix. It is in effect only when measureNames = NULL.

Value

A dataframe with the same columns as the input dataframe but removing the rows with missing values for all measurements in the list.

Examples

## Read an example dataset:
dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz", package = "zoolog")
dataExample <- utils::read.csv2(dataFile, na.strings = "", encoding = "UTF-8")

## We can observe the first lines (excluding some columns for visibility):
head(dataExample)[, -c(6:20,32:64)]

## Remove the cases not including any measurement present in the reference.
refMeasureNames <- unique(reference$Combi$Measure)
refMeasureNames
dataExamplePruned <- RemoveNACases(dataExample, measureNames = refMeasureNames)

## The first lines of the output data frame show at least one available measurement value in the selected list:
head(dataExamplePruned)[, -c(6:20,32:64)]
## If we compute first the log-ratios

dataExampleWithLogs <- LogRatios(dataExample)
## the cases not including any log-ratio can be removed with the
## default logPrefix

dataExampleWithLogsPruned <- RemoveNACases(dataExampleWithLogs)
head(dataExampleWithLogsPruned)[, -c(6:20,32:64)]

---

**StandardizeNomenclature**

*Standardize Nomenclature*

### Description

Functions to map the user provided nomenclature into a standard one as defined in a thesaurus.

### Usage

StandardizeNomenclature(x, thesaurus, mark.unknown = FALSE)

StandardizeDataSet(data, thesaurusSet = zoologThesaurus)

### Arguments

- **x**: Character vector.
- **thesaurus**: A thesaurus object.
- **mark.unknown**: Logical. If FALSE (default) the strings not found in the thesaurus are kept without change. If TRUE the strings not in the thesaurus are set to NA.
- **data**: A data frame.
- **thesaurusSet**: A thesaurus set.

### Details

StandardizeNomenclature standardizes a character vector according to a given thesaurus.

StandardizeDataSet standardizes column names and values of a data frame according to a thesaurus set.

### Value

StandardizeNomenclature returns a vector of the same length as the input vector x. The names present in the thesaurus are set to their corresponding category. The names not in the thesaurus are kept unchanged if mark.unknown=FALSE (default) and set to NA if mark.unknown=TRUE.

StandardizeDataSet returns a data frame with the same structure as the input data, but standardizing its nomenclature according to a thesaurus set including appropriate thesauri for its column names and for the values of a set of columns.
Subtaxonomy

See Also

`zoologThesaurus` for a description of the thesaurus and thesaurus set structure, `ThesaurusReaderWriter, ThesaurusManagement`

Examples

```r
Select the thesaurus for taxa present in the thesaurus set
zoolog::zoologThesaurus:
thesaurus <- zoologThesaurus$taxon
thesaurus
Standardize an heterodox vector of taxa:
StandardizeNomenclature(c("bota", "giraffe", "pig", "cattle"),
 thesaurus)
Observe that "giraffe" is kept unchanged since it is not included in
any thesaurus category.
But if mark.unknown is set to TRUE, it is marked as NA:
StandardizeNomenclature(c("bota", "giraffe", "pig", "cattle"),
 thesaurus, mark.unknown = TRUE)
This thesaurus is not case sensitive:
attr(thesaurus, "caseSensitive") # == FALSE
Thus, names are recognized independently of their case:
StandardizeNomenclature(c("bota", "BOTA", "Bota", "boTa"),
 thesaurus)
Load an example data frame:
dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz",
 package = "zoolog")
dataExample <- utils::read.csv2(dataFile,
 na.strings = "",
 encoding = "UTF-8")
Observe mainly the first columns:
head(dataExample[,1:5])
Standardize the dataset:
dataStandardized <- StandardizeDataSet(dataExample, zoologThesaurus)
head(dataStandardized[,1:5])
```

Subtaxonomy

Subtaxonomy under taxonomical category

Description

Functions to obtain the subtaxonomy or the set of taxa included in a particular taxonomic group, according to the `zoologTaxonomy` by default.
Subtaxonomy

Usage

Subtaxonomy(
  taxon,
  taxonomy = zoologTaxonomy,
  thesaurus = zoologThesaurus$taxon
)

SubtaxonomySet(
  taxon,
  taxonomy = zoologTaxonomy,
  thesaurus = zoologThesaurus$taxon
)

GetSpeciesIn(
  taxon,
  taxonomy = zoologTaxonomy,
  thesaurus = zoologThesaurus$taxon
)

Arguments

taxon A name of any of the taxa, at any rank included in the taxonomy (from species to family in the zoolog taxonomy).
taxonomy A taxonomy from which to extract the subtaxonomy. By default taxonomy = zoologTaxonomy.
thesaurus A thesaurus allowing datasets with different nomenclatures to be merged. By default thesaurus = zoologThesaurus$taxon.

Value

Subtaxonomy returns a data.frame with the same structure of the input taxonomy but with only the species (rows) included in the queried taxon, and the taxonomic ranks (columns) up to its level.
SubtaxonomySet returns a character vector including a unique copy (set) of all the taxa, at any taxonomic rank, under the queried taxon. Equivalent to Subtaxonomy but as a set instead of a dataframe.
GetSpeciesIn returns a character vector including the species included in the queried taxon.

Examples

## Get species of genus Sus:
GetSpeciesIn("Sus")

## Get species of family Bovidae:
GetSpeciesIn("Bovidae")

## Get the subtaxonomy of the Tribe Caprini:
Subtaxonomy("Caprini")
## Use SubtaxonomySet to join categories for computing log-ratios.
For this, we read an example dataset:
```
dataFile <- system.file("extdata", "dataValenzuelaLamas2008.csv.gz", package="zoolog")
dataExample <- utils::read.csv2(dataFile,
 na.strings = "", encoding = "UTF-8")
```
## We illustrate with a subset of cases to make the example run sufficiently fast:
```
dataExample <- dataExample[1:1000,]
```
## Compute the log-ratios joining all taxa from tribe \emph{Caprini} to use the reference of \emph{Ovis aries}:
```
categoriesCaprini <- list("Ovis aries" = SubtaxonomySet("Caprini"))
dataExampleWithLogs <- LogRatios(dataExample, joinCategories = categoriesCaprini)
```
ThesaurusManagement

Value

NewThesaurus returns an empty thesaurus. This can then be populated by AddToThesaurus.

AddToThesaurus returns the input thesaurus complemented with new names in the categories identified. If any of the categories is not present in the input thesaurus, new categories are added as required.

RemoveRepeatedNames returns the input thesaurus pruned of redundant names in each category. The redundancy is evaluated in agreement with the case and accent sensitivity of the thesaurus.

ThesaurusAmbiguity returns FALSE if no ambiguity is present. When any ambiguity is found, it returns TRUE with an attribute `errmessage` including the names present in more than one category and the the involved categories. This is internally used by `ReadThesaurus` and `AddToThesaurus` to generate an error in case they attempt to read or generate an ambiguous thesaurus.

See Also

zoologThesaurus for a description of the thesaurus and thesaurus set structure,
ReadThesaurus, WriteThesaurus, StandardizeNomenclature

Examples

```r
Load an example thesaurus:
thesaurus <- ReadThesaurus(system.file("extdata", "taxonThesaurus.csv", package="zoolog"))

with categories
names(thesaurus) # "bos taurus" "ovis aries" "sus domesticus"

Add names to several categories:
thesaurusExtended <- AddToThesaurus(thesaurus,
 c("Kuh", "Schwein"),
 c("bos taurus","sus domesticus"))

This adds the name "Kuh" to the category "bos taurus" and
the name "Schwein" to the category "sus domesticus".

Generate a new thesaurus and populate it with two categories
("red" and "blue"):
thesaurusNew <- NewThesaurus()
thesaurusNew <- AddToThesaurus(thesaurusNew,
 c("scarlet", "vermilion", "ruby", "cherry",
 "carmine", "wine"),
 "red")

thesaurusNew <- AddToThesaurus(thesaurusNew,
 c("sky blue", "azure", "sapphire", "cerulean",
 "navy", "lapis lazuli", "indigo", "cyan"),
 "blue")

thesaurusNew

Attempt to generate an ambiguous thesaurus
try(AddToThesaurus(thesaurusNew, "scarlet", "blue"))

Remove repeated names in the same category:
thesaurusWithRepetitions <- AddToThesaurus(thesaurusNew,
```
c("scarlet", "ruby"), "red")

thesaurusWithRepetitions
RemoveRepeatedNames(thesaurusWithRepetitions)

ThesaurusReaderWriter  Thesaurus Readers and Writers

Description
Functions to read and write thesauri and thesaurus sets.

Usage
ReadThesaurus(
  file,
  caseSensitive = FALSE,
  accentSensitive = FALSE,
  punctuationSensitive = FALSE
)

ReadThesaurusSet(file)

WriteThesaurus(thesaurus, file)

WriteThesaurusSet(thesaurusSet, file)

Arguments
file  Name of a file.
caseSensitive, accentSensitive, punctuationSensitive
  Logical. They set the case, accent, and punctuation sensitivity (FALSE by default) of the thesaurus.
thesaurus  A thesaurus object.
thesaurusSet  A thesaurus set.

Value
WriteThesaurus and WriteThesaurusSet create or overwrite the corresponding files. No value is returned.
ReadThesaurus and ReadThesaurusSet return the read thesaurus or thesaurusSet, respectively.

See Also
zoologThesaurus for a description of the thesaurus and thesaurus set structure,
ThesaurusManagement, StandardizeNomenclature
Examples

## Read a thesaurus for taxa:

```r
thesaurusFile <- system.file("extdata", "taxonThesaurus.csv", package="zoolog")
thesaurus <- ReadThesaurus(thesaurusFile)
The attributes of the thesaurus include the fields 'caseSensitive',
'accentSensitive', and 'punctuationSensitive', all FALSE by default.
attributes(thesaurus)
```

## Any of them can be set by the user if desired:

```r
thesaurus2 <- ReadThesaurus(thesaurusFile, accentSensitive = TRUE)
attributes(thesaurus2)
```

## Write the thesaurus to a file:

```r
fileExample <- file.path(tempdir(), "thesaurusExample.csv")
WriteThesaurus(thesaurus, fileExample)
Replace tempdir() for your preferred local path if you want to easily
examine the written file.
```

## Read a thesaurus set:

```r
thesaurusSetFile <- system.file("extdata", "zoologThesaurusSet.csv", package="zoolog")
thesaurusSet <- ReadThesaurusSet(thesaurusSetFile)
The attributes of the thesaurus set include information of the constituent
thesauri: names, source file names, and their mode of application on datasets.
The attributes of each thesaurus are also set by 'ReadThesaurusSet'.
attributes(thesaurusSet)
```

## Write the thesaurus set to a file:

```r
fileSetExample <- file.path(tempdir(), "thesaurusSetExample.csv")
WriteThesaurusSet(thesaurusSet, fileSetExample)
It writes the thesaurus-set main data frame and each of the included
thesaurus files.
Again, replace tempdir() for your preferred local path if you want to
easily examine the written files.
```

---

**zoologTaxonomy**  
*Taxonomy hierarchy for zoolog*

**Description**

The taxonomy hierarchy for all taxa included in the osteometrical references of the package *zoolog*. This is used to allow the users to group the taxa by any taxonomical category from *species* to *family*. See [Subtaxonomy](#).

**Usage**

*zoologTaxonomy*
Format

The taxonomy is given as a data.frame with columns for \textit{Species}, \textit{Genus}, \textit{Tribe}, \textit{Subfamily}, and \textit{Family}. Each row lists the information for one species:

<table>
<thead>
<tr>
<th>Species</th>
<th>Genus</th>
<th>Tribe</th>
<th>Subfamily</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Bos taurus}</td>
<td>\textit{Bos}</td>
<td>\textit{Bovini}</td>
<td>\textit{Bovinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Bos primigenius}</td>
<td>\textit{Bos}</td>
<td>\textit{Bovini}</td>
<td>\textit{Bovinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Ovis aries}</td>
<td>\textit{Ovis}</td>
<td>\textit{Caprini}</td>
<td>\textit{Caprinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Ovis orientalis}</td>
<td>\textit{Ovis}</td>
<td>\textit{Caprini}</td>
<td>\textit{Caprinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Capra hircus}</td>
<td>\textit{Capra}</td>
<td>\textit{Caprini}</td>
<td>\textit{Caprinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Capra aegagrus}</td>
<td>\textit{Capra}</td>
<td>\textit{Caprini}</td>
<td>\textit{Caprinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Gazella gazella}</td>
<td>\textit{Gazella}</td>
<td>\textit{Antilopini}</td>
<td>\textit{Antilopinae}</td>
<td>\textit{Bovidae}</td>
</tr>
<tr>
<td>\textit{Sus domesticus}</td>
<td>\textit{Sus}</td>
<td>\textit{Suini}</td>
<td>\textit{Suinae}</td>
<td>\textit{Suidae}</td>
</tr>
<tr>
<td>\textit{Sus scrofa}</td>
<td>\textit{Sus}</td>
<td>\textit{Suini}</td>
<td>\textit{Suinae}</td>
<td>\textit{Suidae}</td>
</tr>
<tr>
<td>\textit{Cervus elaphus}</td>
<td>\textit{Cervus}</td>
<td>\textit{Cervini}</td>
<td>\textit{Cervinae}</td>
<td>\textit{Cervidae}</td>
</tr>
<tr>
<td>\textit{Dama mesopotamica}</td>
<td>\textit{Dama}</td>
<td>\textit{Cervini}</td>
<td>\textit{Cervinae}</td>
<td>\textit{Cervidae}</td>
</tr>
<tr>
<td>\textit{Equus asinus}</td>
<td>\textit{Equus}</td>
<td>\textit{Equini}</td>
<td>\textit{Equinae}</td>
<td>\textit{Equidae}</td>
</tr>
<tr>
<td>\textit{Equus caballus}</td>
<td>\textit{Equus}</td>
<td>\textit{Equini}</td>
<td>\textit{Equinae}</td>
<td>\textit{Equidae}</td>
</tr>
<tr>
<td>\textit{Oryctolagus cuniculus}</td>
<td>\textit{Oryctolagus}</td>
<td>\textit{Leporidae}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Canis familiaris}</td>
<td>\textit{Canis}</td>
<td>\textit{Canini}</td>
<td>\textit{Caninae}</td>
<td>\textit{Canidae}</td>
</tr>
<tr>
<td>\textit{Canis lupus}</td>
<td>\textit{Canis}</td>
<td>\textit{Canini}</td>
<td>\textit{Caninae}</td>
<td>\textit{Canidae}</td>
</tr>
</tbody>
</table>

File Structure

\texttt{zoologTaxonomy} is an exported variable automatically loaded in memory. In addition, the csv source file \texttt{zoologTaxonomy.csv} generating it is included in the \texttt{zoolog} extdata folder.

---

\begin{itemize}
  \item \texttt{zoologThesaurus} \textit{Thesaurus Set for zoolog}
\end{itemize}

Description

The thesaurus set defined for the package \texttt{zoolog}. This is used to make the methods robust to different nomenclatures used in datasets created by different authors. The user can also use other thesaurus sets, or can modify the provided thesaurus set (see \texttt{ThesaurusManagement} and \texttt{ThesaurusReaderWriter}).

Usage

\texttt{zoologThesaurus}

Format

A thesaurus set is a list of thesauri with additional attributes:

\begin{itemize}
  \item \textbf{names} Character vector with the name of each thesaurus.
\end{itemize}
applyToColNames Logical vector indicating whether each thesaurus should be applied to the column names of the data frame.

applyToColValues Logical vector indicating whether each thesaurus should be applied to the values in the corresponding column of the data frame.

filename Character vector with the source file of each thesaurus.

The examples below show the list of four thesauri included in the provided zooLogThesaurus.

Each thesaurus is a data frame also with additional attributes. Each column of the data frame is a category of names with equivalent meaning in the intended application. The column name identifies the category and is used as the standard when applying StandardizeNomenclature.

The names in each column (category) must not be included in any other column, since this would make the thesaurus ambiguous (see ThesaurusAmbiguity).

Each thesaurus has the following attributes:

names The standard name for the categories.
class "data.frame"
row.names Irrelevant
caseSensitive Logical indicating whether the names in the thesaurus should be considered case-sensitive.
accentSensitive Logical indicating whether the names in the thesaurus should be differentiated by the presence of accent marks.
punctuationSensitive Logical indicating whether the names in the thesaurus should be differentiated by the presence of punctuation marks.

The examples below show the content and characteristics of the first thesaurus in zooLogThesaurus.

File Structure

zooLogThesaurus is an exported variable automatically loaded in memory. In addition, the source files generating it are included in the zooLog extdata folder. There is one file for the thesaurus set main structure and one file for each included thesaurus. All of them are in semicolon separated format. Thus, they can be examined in any text editor or imported into any spreadsheet application. The files are:

zooLogThesaurusSet.csv Defines the main structure of the thesaurus set. It has a row for each thesaurus and seven columns (ThesaurusName, FileName, CaseSensitive, AccentSensitive, PunctuationSensitive, ApplyToColNames, and ApplyToColValues). Their meaning coincides with the description above. Observe that the case, accent, and punctuation sensitiveness is stored here, instead of in each thesaurus.

identifierThesaurus.csv Thesaurus for the identifiers used in LogRatios to identify the bone types and the measure names in the data and the references. It has for columns: Taxon, Element, Measure, and Standard.

taxonThesaurus.csv Thesaurus for the taxa. There is one column for each category of taxon considered.

elementThesaurus.csv Thesaurus for the skeletal elements. One column for each category.

measureThesaurus.csv Thesaurus for the measure names. One column for each category.
## Examples

```r
List of thesaurus names and characteristics in the thesaurus set:
attributes(zoologThesaurus)
Content of the first thesaurus:
zoologThesaurus$identifier
attributes(zoologThesaurus$identifier)
```
Index

* datasets
  referencesDatabase, 11
  zoologTaxonomy, 25
  zoologThesaurus, 26

%in%, 7

AddToThesaurus, 23
AddToThesaurus (ThesaurusManagement), 22
AssembleReference, 2, 14

CondenseLogs, 3

dataValenzuelaLamas2008, 5

GetSpeciesIn (Subtaxonomy), 20

InCategory, 7
is.element, 7

log ratios, 14
LogRatios, 8, 27

NewThesaurus (ThesaurusManagement), 22

ReadThesaurus, 23
ReadThesaurus (ThesaurusReaderWriter), 24

ReadThesaurusSet (ThesaurusReaderWriter), 24
  reference, 8
  reference (referencesDatabase), 11
  referencesDatabase, 3, 11
  referenceSets (referencesDatabase), 11
  RemoveNACases, 18
  RemoveRepeatedNames (ThesaurusManagement), 22

StandardizeDataSet (StandardizeNomenclature), 19
StandardizeNomenclature, 19, 23, 24, 27
Subtaxonomy, 20, 25

SubtaxonomySet, 9
SubtaxonomySet (Subtaxonomy), 20

ThesaurusAmbiguity, 27
ThesaurusAmbiguity (ThesaurusManagement), 22
ThesaurusManagement, 20, 22, 24, 26
ThesaurusReaderWriter, 20, 24, 26

WriteThesaurus, 23
WriteThesaurus (ThesaurusReaderWriter), 24

WriteThesaurusSet (ThesaurusReaderWriter), 24

zoologTaxonomy, 8, 20, 21, 25
zoologThesaurus, 7, 8, 20, 21, 23, 24, 26